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Summary. Simultaneous improvement of several, and 
often negatively correlated, traits is frequently a desired 
objective in forest tree breeding. A profit function that 
includes a combination of both linear weights and 
weights for the cross-products of trait combinations facil- 
itates the construction of a linear index, with an attractive 
response in all traits. A detailed algorithm for finding the 
index coefficients is provided, along with three examples 
of applications in tree breeding. The index is also a 
powerful tool in optimizing the selection for a ratio of two 
traits. It is argued that a more equal progress in several 
traits provides a safetey net when faced with economic 
uncertainties. The provided algorithm eliminates the 
need for direct search techniques. Existence of a dual set 
of linear weights means that the statistical properties of 
the index based on nonlinear profit functions are identi- 
cal to those of the classical Smith-Hazel type of index. 

Key words: Selection index - Nonlinearity - Ratios - 
Genetic gain - Multitrait trade-offs 

Introduction 

Index selection presents tree breeders with the attractive 
option of combining information from several traits/sites 
into a single index with a maximum correlation to the 
additive genetic merit of the traits (Cotterill 1985; Cotter- 
ill and Jackson 1985). Genetic progress using the Smith- 
Hazel type of selection index (Smith 1936; Hazel 1943) is 
widely expected to be better than most alternative indices 
(Hazel and Lush 1942; Harris 1964; Turner and Young 
1969). Flexibility with respect to constraints on the ex- 
pected genetic response increases the utility of index se- 
lection in breeding (Kempthorne and Nordskog 1959; 

Cunningham et al. 1970; Harville 1975; Tai 1977; Itoh 
and Yamada 1988 a). 

A perceived shortcoming of the traditional Smith-Ha- 
zel index is its limitation to a linear profit function (Baker 
1986). In a linear profit function, the overall value of 
improvement is determined as the sum of the separate 
values arising from improvements in each individual 
trait. There is no allowance for an economic interaction 
between the traits. In forestry, the crop value attained by 
improving one trait quite often depends on the level of 
improvement in other traits. For example, the value of 
improving stem straightness will increase in proportion 
to the'expected volume gain. A similar rationale holds for 
improvement in most quality-related traits. In short, 
what the breeder sometimes wants is to improve combi- 
nations of traits simultaneously, instead of gaining a lot 
in a single trait at the "expense" of others. A long rotation 
crop, such as trees, with many traits at a favorable level 
may, indeed, be more valuable in a market with shifting 
economic preferences than one with only one or a few 
traits at superior levels. 

This study shows how a linear index based on a profit 
function that includes cross products of the traits can 
facilitate simultaneous improvement of traits or trait ra- 
tios, regardless of their correlation structure. The deriva- 
tion of index weights for the nonlinear profit function has 
been generalized by Itoh and Yamada (1988b). Al- 
gorithms for approximate solutions for the quadratic and 
cubic merit functions have been known for some time 
(Wilton et al. 1968; Ronningen 1971). The index solution 
advocated by Itoh and Yamada (1988 b) is intuitively ap- 
pealing. First, the multivariate normal response surface 
of genetic gain for a certain selection ratio is defined in 
terms of sample estimates of the phenotypic and genetic 
variances and covariances. Next, the economic value of 
the feasible genetic responses is calculated via the profit 
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function and, third, the opt imum profit is determined by 
classical optimization procedures. Coefficients for the re- 
sulting linear selection index are obtained in retrospect 
once the opt imum response has been determined. 

Although the problem of assigning weights to traits is 
notorious in tree breeding (Bridgwater et al. 1983; Zobel 
and Talbert 1984; Magnussen and Keith 1990), one way 
to ameliorate the problem is to explore the effects of a 
range of weights on the selection response and then to 
choose the "best" set of weights (King et al. 1988). For  
two or three traits this procedure may be manageable, 
but  it quickly becomes unwidely when more traits are 
considered. A simple expansion of the proposed index 
based on a nonlinear  profit function offers a simplified 
and easier method to explore the significance of interac- 
tive economic weights. 

The i n d e x  

Consider the task of finding a linear index I for m traits, with a 
phenotypic variance-covariance matrix P and an additive genet- 
ic variance-covariance matrix of G. Sample estimates are used 
for both P and G without further distinction (Harris 1964). From 
classical index theory based on the properties of multivariate 
normal distributions (see, e.g., Falconer 1981), we expect the 
feasible response vector d (dimension m) arising from selection 
with an intensity of i, to be constrained within the following 
response surface g (the * symbol is used for transposed matrices; 
arrows are used to indicate vectors, and bars to indicate a ma- 
trix): 

g ( a ) =  d* x G -~ x P x G -~ x d-J2 =0. (1) 

For a given profit functionf(d), the task is now to optimize 
the economic merit of this response (d). The profit function 
chosen here is limited to the form: 

f ( d ) = a *  x d +  k x d* x A x d, (2) 

where a is a vector of linear economic weights (ai, i = 1 . . . .  , m), 
and A is a m x m matrix of economic weights (au; i , j= 1 , . . . ,  rn) 
assigned to the cross products and quadratic terms of the traits 
in d. The factor k is a scaling constant that indicates the weight 
given on nonlinear trait combinations, as opposed to the weights 
(a) given the individual trait responses. Only symmetric A ma- 
trices with zero along the diagonal shall be considered, i.e., there 
are no squared traits in the nonlinear part of the profit function. 
The symmetry is given by the commutative law of multiplication. 
Thus, all nonlinear contributions to the profit function arise 
from two-trait cross products. When k is zero, the nonlinear 
profit function is identical to the traditional linear merit func- 
tion. For an index ofm traits, the profit function reads (for k = 1): 

m m 
f(d)= Z aixdi+ ~ ~ a u x d l x d  j. (3) 

i - I  i # j j # i  

Maximization of Eq. 2 under the constraint of Eq. i is accom- 
plished by first forming the Lagrange function F(d,2)=f(d) 
+ Z ' g(d), (2 is the Lagrange multiplier) and then finding a feasi- 
ble saddle point of this function (Gellert et al. 1975). Specifically, 
we are looking for a solution to the following pair of differential 
(8) equations: 

( ~ ,  ~ )  =(0,0). (4) 

Both f(d) and g(d) are quadratic forms with simple derivatives 
(8*~/Od=d, and ~*Ad/~d=2.&d; Searle 1982). The Newton- 
Raphson iteration method (e.g., Weir 1990) was used to find the 
solution ~b= {d, 2} to Eq. 4. The iterations proceeded in the 
following fashion: 

4new = q~old-I-1-1 ((/)old) X S (q~old) (5) 

where/(~bola) = [ ~ ] 0 = ,  ld 

8F(0)  
S(~old)= - -  and [ 8~b ]r162 a 

An initial value of ~ome was obtained from the index solution b o 
presented by Wilton et al. (1968): 

go=P -1 x l~x (2  x A x  f i ,+~ (6) 

i x G x l ~  o 
which yields d o - 

,/So •215 
/~ is the vector of the m trait means. In this study all traits have 
been adjusted to a zero mean by subtraction of the observed 
mean. From the initial ~old and the condition in Eq. 4, we ob- 
tained the initial 2ol a as (Itoh and Yamada 1988 b): 

[~]d=ao =0, (7) 

which yields 
(2* x G  -1 x P x  G- l )  x (2 x.-~(2o+#~)+~ 

;~~ Y~ x(~* • 6-~ x 6 - b  x (C~  x Px 6 ' Xdo)" 

Iterations were stopped when max ( ~ w  - dold) < 0.0001 (with the 
maximum taken over all traits). Convergence was always 
reached after four iterations and, in most cases, after only two. 

From the final estimates of the response vector d, which 
optimizes Eq. 2, the index coefficient g was found by equating (in 
retrospect) the desired response d to the (Lin 1978) res!2onse 
G,. ~. i/a I expected from a linear index I, and solving for b (the 
scaling factor i/c~ z can be dropped). 

A p p l i c a t i o n  

Example 1: selection for stem diameter and wood density 

The example illustrates how a nonlinear profit function 
can solve the dilemma of simultaneous improvement of 
negatively correlated traits. From King et al. (1988) we 
have the following sample estimates of the phenotypic (P) 
and additive genotypic (G) variance-covariance matrices 
in Douglas fir progenies at age 12: 

diam. dens. 
p =  134.1 -134 .7  

-134 .7  639.7 

diam. dens. 
~ =  31.4 - 7 1 . 0  

- 7 1 . 0  572.3 " (8) 

The phenotypic and genotypic correlation coefficients be- 
tween the diameter at breast height (diam.; unit: cm) and 
relative wood density (dens.; unit: kg/m 3) were - 0 . 4 6  and 
- 0.53, respectively. 
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Fig. 1. Response in diameter and density (left y-axis) and index 
coefficients (right axis) versus k-factor in the nonlinear profit 
function 

For  this example assume that the merit function is: 
f ( d ) =  10- d d i a m "  -I- 1 " d a .... + 2k  " d c l i a m ,  - d a .... (the factor 2 
for the d d l a m  ' " d  a .... term arises from the symmetric prop- 
erties of A). In a linear context (k = 0), this would indicate 
that the economic benefit of 1 mm improvement of di- 
ameter is ten times as high as the benefit from improving 
wood density by I kg/m 3. For  k > 0  the benefit of improv- 
ing diameter increases in proport ion to the improvement 
of density and vice versa. The optimum response and 
index coefficients are depicted in Fig. I for a selection 
ratio of 2.063 (5%) for various values of k. At k = 0  (i.e., 
the profit function is linear) the response in diameter was 
positive (4.5 ram), whereas the density response was neg- 
ative ( - 2 . 1  kg/m3). The corresponding index coefficients 
were 0.19 and 0.020. As k increased, the diameter re- 
sponse was slightly reduced, while the index coefficient 
for diameter remained almost unchanged. The corre- 
sponding results for density increased with k. These 
changes were more pronounced for k values below 0.5 
than above, where the response and index coefficients 
rapidly approached an asymptote. To find the asymptotic 
values set ~ = {0, 0} so that the profit function becomes: 
f(d) = d d i a m "  " d a .... . Faced with this reduced profit func- 
tion, the following optima were computed: d={2.29, 
16.46} and b =  {0.192, 0.0526}. In relative terms this re- 
sponse amounted to a 2.6% improvement of diameter 
and a 4.5% improvement of wood density. King et al. 
(1988) opted for this solution after a direct search among 
the response vectors for a wide range of linear economic 
weights. 

A geometrical interpretation of the optimum index 
solution is provided in Fig. 2. All feasible selection re- 
sponses for i=2.063 are located on the ellipsoid. Three 
profit functions for k = 0  (the linear case), k=1.0,  and 
k = 1,000 have been drawn. When k # 0 the profit function 
becomes a hyperbola. Opt imum solutions for the hyper- 
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d -diameter 
Fig. 2. Optimum response (d) for one linear (k = 0) and two non- 
linear (k = 1 and k = 1,000) profit functions 

bolic profit functions are found at the vertices, and for the 
linear model at the contact point of the tangent, with a 
slope of - 1 0 ,  with the response ellipsoid. Note that the 
asymptotic solution coincides with the "Maximin" solu- 
tion found by a direct search among all possible econom- 
ic weight combinations (King et al. 1988). 

If  the traits at the onset can be considered equally 
important, the maximum relative simultaneous response 
can be determined by an algorithm developed by Mag- 
nussen (1990). For  this particular example, the two solu- 
tions that promise the maximum sum of the relative pro- 
gress in each trait have been indicated in Fig. 2. They are 
characterized by a substantial gain in one trait at the 
expense of progress in the other. 

Example 2: selection for volume and wood quality 
in jack pine 

The traits to improve are stem volume, heartwood con- 
tent, wood density, and stem taper (Magnussen and 
Keith 1990). From a 20-year-old progeny trial we ob- 
tained the phenotypic (P) and genotypic (G) matrices 
listed in Eq. 9. We wanted to reduce heartwood content 
and taper while increasing volume and wood density. 
With taper defined here as the ratio of stem diameter at 
half the tree height to the diameter at breast height, a 
reduction in taper is achieved by increasing the numerical 
value of this ratio (Ex. 4 shows, in principle, how taper 
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could be improved by selection 
diameters). 

P =  

on the two associated 

volume heartw, dens. 

24524.10 - 22.14 - 95.04 

-22 .14  23.07 -15 .26  

-95 .04  -15 .26  562.00 

265.51 - 2 . 5 9  5.20 

volume heartw, dens. 

2224.00 27.52 -96 .00  

27.52 6.60 - 5.20 

- 96.00 - 5.20 228.00 

166.72 - 4 . 9 2  4.52 

taper 

265.51 

--2.59 

5.20 

52.93 

G = taper . 
166.72 

--4.92 (9) 

4.52 

17.16 

The profit model chosen to illustrate this example is listed 
in Eq. 10 (row order: volume, heartwood percent density, 
and taper). 

f ( d )  = 1 x ~ +  k x a~* x 20 1 0 

5 1 1 
(10)  

Volume is clearly given the highest linear economic 
weight, in agreement with an earlier study (Magnussen 
and Keith 1990) which indicated that emphasis on vol- 
ume would generate acceptable progress in the remaining 
traits. The cross product  weights in A express a desire to 
reward and/or penalize simultaneous responses in pairs 
of traits. For  example, an improvement of volume by one 
unit is valued at 20 extra points for every concomitant 
unit of improved wood density. In a similar fashion, a 
unit improvement of volume is penalized by 5 points if 
the heartwood is also increased by I unit. 

Changes in the optimum response vector for various 
k-values are shown in Fig. 3; the corresponding changes 
in the index coefficients are presented in Fig. 4. An in- 
crease in k from 0 to 0.20 invoked substantial changes in 
the volume and density response, whereas the response of 
heartwood and taper only underwent minor changes. The 
effect of the cross product matrix A. on the selection out- 
come was the desired one. Rewarding simultaneous im- 
provement of volume and wood density resulted in a 
reversal of the response in density from - 1 to + 6 kg/m 3, 
accompanied by a drop in the response of volume from 
26 to 18 dm 3. 10 -~. Changes in heartwood response, 
although minor, were attractive. Only the slight reduced 
response in taper was counter to the desired changes. The 
asymptotic responses were those obtainable with the 
profit func t ionf (d)=  d* �9 A .  d; they differ less than 0.1% 
from the results shown for k = 20 in Fig. 3. 

Changes in index coefficients obviously alter the set of 
trees selected. Figure 5 shows the relationship between 
the index for k =  1 (nonlinear profit function, almost 
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-5 -0.5~ 
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k - factor 

Fig. 3. Optimum response in volume, heartwood, density, and 
taper for various k-factors in the profit function (Eq. 10) 
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Fig. 4. Optimum index coefficients for volume, heartwood, den- 
sity, and taper for various k-values in the profit function (Eq. 10) 
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Fig. 5. Selection index 11 for the quadratic profit function (k = 1 
in Eq. 10) plotted against the selection index I o for the linear 
profit function (k=0 in Eq. 10). Traits: volume, density, heart- 
wood, and taper. Dashed lines indicate the 5% selection 
thresholds for the two indices 

asymptotic) and the index based on a linear profit func- 
tion (k=0) when the top 5% of the trees was selected. 
Although the overall relationship was tight (r=0.91), 
one-third of the trees selected by one of the indices would 
not have been selected by the other. Similar results were 



obtained at lower selection ratios (10 and 20%). Trees 
selected exclusively by the index with the linear profit 
function (k=0) had a phenotypic volume and density 
response of 52.0 dm 3 and - 1.8 kg/m a, respectively. The 
parallel responses in the trees selected exclusively by the 
index with k = 1 were 36.8 dm a and 11.5 kg/m 3, a clear 
indication of the shift towards simultaneous improve- 
ment of volume and density. 

Example 3." selection for annual height growth in jack pine 

The following P and G variance-covariance matrices 
were obtained for 4 years annual height growth (hl-h0, 
h2-hl, h3-h2, and h4-h3) from a jack pine half-sib pro- 
geny trim (Magnussen and Yeatman 1987): 

hl-h0 h2-hl h3-h2 h4-h3 

34.9 -10.2 -26.4 26.0 

P =  --10.2 108.1 10.6 -12.0 

--26.4 10.6 487.5 -72.6 

26.2 -12.0 -72.6 299.3 

C;= hl-h0 h2-hl h3-h2 h4-h3 

9.6 -1 .7  -9 .5  9.3 

--1.7 40.1 25.9 3.8 (11) 

-9 .5  25.9 58.5 -27.1 

9.3 3.8 --27.1 30.8 

Selection is for improved annual height growth within 
each of the 4 years. The value of a unit improvement in 
annual height growth is, theoretically at least, indepen- 
dent of the age of the tree 1, but its overall value will 
depend on both the direct response to selection and the 
indirect responses due to the correlation with height 
growth in other years. For these reasons the following 
profit function was chosen: 

1 0 1 1 x, / .  (12) 
f (d)= x d + k x d * x  1 1 0 1 

1 1 1 O /  

Optimum responses for various k-values are graphed 
in Fig. 6, while the corresponding index coefficient solu- 
tions are found in Fig. 7. With k equal to zero, the total 
expected height growth response by selecting the top 5% 
of the trees amounted to 15.4 cm or 8.1% of the mean 
height of all progenies at age 4. Improvement of 2nd and 
3rd year's height accounted for 53 and 32%, respectively, 
of the total improvement. When the value of an improve- 
ment in I year's growth is proportional to the improve- 
ment in the other years (k > 0), we see a shift in the re- 
sponse towards less improvement in the 2nd and 3rd year 

i Rapid early growth may have some major payoffs by requir- 
ing less tending 
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Fig. 6. Response in 4 years annual height growth at various 
levels of the k-factor in the profit function (Eq. 12) 
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Fig. 7. Index coefficients (weights) for 4 years annual height 
growth at various level of the k-factor in the profit function 
(Eq. 12) 

and a reverse trend in the improvement of 1st and 4th 
year's growth. A stable response pattern was reached for 
k > 0.2. Overall the total response dropped by 1.4% when 
k increased from 0 to  20. What the nonlinear profit func- 
tion achieved was to dampen the ratio of the best (2nd 
year's growth) to the poorest (1st year's growth) response 
from 11 to 6. This was also reflected in differences in the 
rank stability of growth between the trees selected with 
the linear profit function (k =0) and those selected by the 
nonlinear function (k = 1). The former group had an aver- 
age rank correlation (Spearman) of 0.68, while the corre- 
lation in the latter group was 0.76. A total of 78% of the 
trees selected with the linear profit function would also 
have been selected with the index based on the nonlinear 
index in Eq. 12. It should be noted that it is possible to 
obtain an 8.7% gain in height at age 4 with an index 
based on height and not annual growth (Magnussen 
1990). The maximum simultaneous response (Magnussen 
1990), which can be considered the biological approach 
(no a priori weighting), promised 6.2% gain in final 
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height at age 4. A lower response to selection on periodic 
growth than selection for final size was also demonstrated 
by Namkoong and Matzinger (1975) when they selected 
for weekly growth in Nicotiana tabacum L. 

Example 4: improvement o f  traits expressed as ratios 

Improvement of the ratio of two traits is often desired in 
order to increase some measure of production efficiency. 
The classical examples from dairy improvement are per- 
cent milk fat and weight gain to feed consumption. If the 
two traits in the ratio are both normally distributed, their 
ratio is not (Turner and Young 1969), and the classical 
Smith-Hazel type of selection index is no longer applica- 
ble. An index with the type of nonlinear profit function 
used in the previous examples can also be used to find the 
optimum solutions for selection for a ratio. Existing 
methods for finding an index for a trait ratio are based on 
either a linear approximation or a simple selection based 
on the ratios of univariate breeding values (see Famula 
1990 for further details). 

From an example, presented by Famula (1990) in a 
recent note on the problem of optimizing the ratio of two 
traits x~ and x2, we have the following results: 

E(x t, xz)=(190, 790) 

X 1 X 2 

P =  235 598 

598 3708 

= X1 X 2 

C, 106 337 . (13) 

337 1854 

To optimize the ratio x J x 2 ,  it is convenient to use the 
transformation x 3 = 1Ix 2 and then to recalculate the phe- 
notypic and genotypic variance-covariance matrices by 
application of the 'Delta technique' (Bulmer 1985, Eq. 
6.27, p. 83). After this manipulation the following ma- 
trices were obtained: 

E(xl,  x3)=(190, 0.001267) 

o 0 o o 9 6  

--0:00096 9.5 x 10 .9 

X 1 

G =  106 

-0.00054 

X3 

- 0.00054 
4.8 x 10  - 9  

(14) 

The profit function for optimizing x l / x2  is hereafter: 
F ( d ) = ~ r * x N x 3  where d = { x  1, x3} and A={0  0.5, 
0.5 0}. Index coefficients (b) obtained with this proce- 
dures were 0.0786 for x 1 and 11790.7 for 1Ix 2. This index 
was strongly correlated (r > 0.990) with the two alterna- 
tive indices presented by Famula (1990). Selection based 

on the above index is expected to increase the ratio (x l /  
xz) from 0.241 before selection to 0.246 for a selection 
intensity of 1.0. The two indices used by Famula promise 
the same improvement per unit selection intensity. Appli- 
cation of the principle of maximum simultaneous pro- 
gress (in x 1 and 1/x2) would procedure a shift in the ratio 
from 0.24i to 0.245 for a unit selection intensity. 

Discussion and conclusions 

The idea of extending the selection index theory to in- 
clude nonlinear profit function has been around for some 
time (Kempthorne and Nordskog 1959; Wilton et al. 
1968), but a mathematically correct approach to the solu- 
tion has recently been provided by Bulmer (1985) and 
Itoh and Yamada (1988 b). The solutions presented in this 
study are based on Itoh and Yamada's work. Bulmer's 
solution addresses the optimization of the progeny value 
of selected parents, which leads to a search for the opti- 
mum assortative mating of the parents. Assortative mat- 
ing is indeed attractive in the presence of nonlinear profit 
functions (Allaire 1980; Goddard 1983; Burdon 1990), 
and it should be considered as an option in the breeding 
following selection based on nonlinear profit functions 
(Allaire 1980). 

Previous methods for finding index weights in the 
presence of quadratic profit functions have used an ex- 
pansion of the phenotypic and genotypic variance-co- 
variance matrices based on expected values (Ronningen 
1971), a least-squares solution with expectations of 
squared random variables (breeding values) (Wilton et al. 
1968), or added nonlinear transformation of the traits as 
new traits to be selected for (Kempthorne and Nordskog 
1959). These methods have been criticized for various 
reasons. Goddard (1983) argued the point that some non- 
linear indices were exploiting nonadditive variances and 
thus overestimating the expected response. He also point- 
ed to the fact that maximizing the genetic merit of the 
parents is not identical to maximizing the genetic merit of 
the offspring. Segregation and recombination would tend 
to dampen the effect of nonlinear profit. This was con- 
firmed in a simulation for a single trait by Burdon (1990). 
Ronningen (1971) found that inclusion of nonlinear 
transformations as new traits might confound some of 
the genetic variances with phenotypic contributions. 

The index solution advocated by Itoh and Yamada 
(1988 b) does not suffer from these shortcomings because 
it is based on the restriction of the response surface, which 
is derived directly from the classical Smith-Hazel type of 
index and multivariate normal theory (Smith 1936; Hazel 
1943). All points on the feasible response surface are solu- 
tions to the traditional index with a linear merit function. 
In other words, a set of linear economic weights can be 
found in retrospect once the desired response has been 
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determined. The desired response is simply the one that  
maximizes the profit function. I toh  and Yamada's (1988 b) 

solution is more t ransparent  and logical because it is 
derived from classical mathematical  theory of condit ion- 
al optimizing of convex target functions (Gellert et al. 
1975). Its applicat ion to selection for traits expressed as 
ratios and difference series (growth data) adds to the 
utility of the herein presented index method (Famula  
1990). The abundance  of normal ly  distr ibuted traits justi- 
fies reliance on normal  theory. 

Because a set of linear economic weights can be found 
in retrospect for each solution based on a nonlinear profit 
function, the accuracy of an index is not  affected by inclu- 
sion of nonlinear  terms in the profit function. Methods 
outlined by Hayes and Hill (1980) and Tai (1989), to 
assess the stabili ty and accuracy of an index, apply equal- 
ly to situations with nonlinear  profit functions. A sensitiv- 
ity analysis of the expected response is always recom- 
mended to ensure that  expectations remain realistic. 

Linear selection indices (namely, linear functions of 
the phenotypes for different traits) based on nonlinear 
value functions for crop improvement  are especially at- 
tractive when desirable trait  combinat ions are negatively 
correlated and when uncertainties surround the econom- 
ic weights of individual  traits. Fo r  the simple model  illus- 
t rated in this study, addi t ional  economic weights were 
only needed for the trait  cross products  in order to ex- 
ploit, in a s traightforward manner,  the potential  for 
simultaneous improvement  in several traits or ratios of 
traits. When more economic emphasis is placed on the 
simultaneous improvement  of traits, the index solution 
rapidly approaches an asymptote  that  can be found by 
simply dropping  the linear term for the profit function. 
The asymptot ic  solution will, of course, depend on the 
pat tern of economic weights given to the pair-wise trait  
combinations.  In this respect, the presented index tool is 
more flexible than the algori thm intended for finding the 
maximum relative simultaneous solution (Magnussen 
1990). Both methods,  however, are far superior to the 
more tedious task of finding a set of suitable economic 
weights for three or more traits that  produces acceptable 
progress in all traits. 
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